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Abstract

Machine-learning methods are a collection of techniques for building predictive models from experimental data. The algorithms

are problem-independent: the chemistry and physics of the problem being studied are contained in the descriptors used to represent

the known data. The application of a variety of machine-learning methods to the prediction of ferromagnetism in ordered and

disordered transition metal alloys is presented. Applying a decision tree algorithm to build a predictive model for ordered phases

results in a model that is 100% accurate. The same algorithm achieves 99% accuracy when trained on a data set containing both

ordered and disordered phases. Details of the descriptor sets for both applications are also presented.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Machine learning is rapidly becoming an important
predictive tool in chemistry [1,2]. Most useful for
problems with abundant experimental data, machine-
learning techniques have been successfully applied to
chemical problems running the gamut from catalyst
modeling [3] to prediction of the toxicity of organic
molecules [4]. In this contribution we present the results
of applying some machine-learning methods to the
prediction of ferromagnetism in the transition metals
and their binary alloys.
The phrase ‘‘machine-learning’’ subsumes a diverse

set of algorithms, such as neural networks, decision
trees, and support vector machines. Probably the most
widely used machine-learning algorithms (though they
are rarely recognized as such) are the regression methods
that form the basis of most quantitative structure–
activity relationship (QSAR) studies [5]. All of these
algorithms have one goal in common: the automated
discovery of patterns in data in order to build predictive
models [6,7]. Machine-learning algorithms are indepen-
onding author.
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dent of the particular problem being investigated, be it
predicting ferromagnetism or stock prices; they rely
solely on the data. An advantage resulting from this
characteristic is that the underlying problem domain—
the physics or chemistry—need not be fully understood.
The trade-off is that machine learning generally requires
a large amount of data. In order for the methods to be
successful, these data should be internally consistent;
i.e., either collected under similar conditions or, at a
bare minimum, normalizable.
Solid-state physics offers several problems, such as

high-Tc superconductivity and giant magnetoresistance,
which are potential candidates for machine-learning
approaches. These are industrially relevant problems
that are incompletely understood but where accurate
experimental data are available. It is not clear whether,
at this time, a sufficient quantity of consistently
measured data is available for successful application of
machine learning to these areas. In order to test the
effectiveness of machine learning on solid-state pro-
blems with limited data, we have studied the problem of
predicting a complex materials property from a small
set of highly accurate data. We chose ferromagnetism
as the materials property because it is both a complex
and a well-understood phenomenon, providing an
excellent test case [8–12]. In addition, while current
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electronic-structure calculations are capable of very
accurate predictions of ferromagnetism, they are very
computationally expensive and not universally applic-
able.
For the machine-learning option, we chose to use a

simple classification algorithm, a decision tree, and to
attempt only binary classification. In other words, the
algorithm employed herein attempts to assign the data
points—the elements or alloys—to one of two classes:
those that display ferromagnetism, and those that do
not. A second learning method, hierarchical clustering,
is also investigated for its ability to uncover patterns in
the data. Note that the scope of this study is limited to
predicting merely the existence of a ferromagnetic state,
not the magnitude of magnetic moments.
3The process being described is more accurately termed hierarchical

agglomerative clustering.
4Standardization translates and scales the values of each descriptor

(columns in the data matrix) such that their means are 0 and their
2. Methods

2.1. Descriptors

As is the case in QSAR studies, when using machine-
learning methods, substances such as molecules, alloys,
and salts are represented using a set of descriptors
instead of (or in addition to) their chemical identity.
Descriptors can be drawn from experimental properties
or computed ab initio. They can be as complex as the
chemical hardness of a transition metal alloy or as
simple as the molecular weight of an organic compound.
The process by which a set of descriptors for a problem
is selected from the infinity of possibilities varies from
modeler to modeler; there is no optimal strategy. The
one constant is that, in order to build useful models, the
descriptors used must capture the relevant physics and
chemistry of the problem. This renders descriptor sets
highly problem dependant: the best learning methodol-
ogy in the world is unlikely to be able to produce a
meaningful model for ferromagnetism using a set of
descriptors which has been optimized for the prediction
of superconductivity. Thus, although machine-learning
techniques themselves are problem independent, apply-
ing them to solve real problems requires significant
domain knowledge in order to be able to identify a
suitable set of descriptors.

2.2. Hierarchical clustering

Hierarchical clustering refers to a class of learning
algorithms that group data points into clusters based
upon the distances between them in descriptor space.2

The general idea is to start with a group of clusters made
up of the individual data points and then to iteratively
2Clustering is an unsupervised learning algorithm—the known

activity values are not used for model building.
combine clusters to form a tree (hierarchy) of increas-
ingly large clusters.3 See Fig. 5 for an example. The
resulting cluster tree, which can reveal groupings and
regularities in the data set, is often a useful tool for
analyzing and understanding the data.
The data for the ferromagnetic alloys discussed below

were clustered using a Euclidean distance metric and the
group average method [13]. The data were standardized
before being clustered.4

A more detailed introduction to the theory and
practice of hierarchical clustering can be found in
Refs. [13,14].

2.3. Decision trees

Decision trees are a class of predictive models for
classification that are constructed using supervised

learning algorithms.5 A sample tree is shown in Fig. 1.
Decision trees classify data points by starting at the top
of the tree—the root node—and moving down through
the tree by asking a series of ‘‘if–then–else’’ questions of
the descriptor values at each branch point until a
terminal (leaf) node is hit. For example, the tree in Fig. 1
would start by examining the value of Descriptor 1. If
that value is less than v1, the point moves to the left.
Continuing on, if the value of Descriptor 3 is less than
v3, the point moves to the leaf to the left and is classified
as active.
Due to their simplicity and clarity, decision trees tend

to lend themselves to interpretation. Unlike many types
of machine-learning models, such as neural networks,
it is often possible to examine a decision tree and learn
something about the physics or chemistry of the
problem being modeled.
The decision trees presented in this work were built

using a greedy algorithm:

1. If all the data fall into the same class, the tree is
finished. Otherwise:

2. Select the descriptor which best classifies the data.
3. Split the data into subsets based upon the values of

that descriptor.
4. For each subset of the data, proceed to Step 1.

There is no canonical definition of ‘‘best classifies the
data’’ to apply in Step 2 of this algorithm. One standard
approach is to use concepts introduced by Shannon as
part of his development of information theory [15,16].
Central to this method is the concept of the
deviations are 1. This process helps ensure that all descriptors are

treated on equal footing.
5Supervised learning uses the activity values of data points when

building the model.
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Fig. 1. A sample decision tree. The labels v1, v2, v3 and v4 represent

the descriptor boundaries used within each node of the tree (see text).

Terminal (leaf) nodes are shaded light/dark if they correspond to

active/inactive classifications.

6One hopes that there was such a connection in the first place!
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informational entropy of data. The informational en-
tropy of descriptor Di is defined to be

EntropyðDiÞ ¼
XNi

j¼1
�pij log2ðpijÞ; ð1Þ

where Ni is the number of values that can be adopted by
descriptor i; and pij is the fraction of the examples in
which descriptor i adopts value j:
Informational entropy values range from

EntropyðDiÞ ¼ 0:0 for a data set where Di always takes
on the same value to EntropyðDiÞ ¼ 1:0 when every
possible value is equally likely. Given a set of activity
values, A; the information gain associated with each
descriptor can be calculated

GainðDi;AÞ ¼ EntropyðDiÞ �
XNA

v¼1

jDvj
jDj EntropyðD

v
i Þ;

ð2Þ

where NA is the number of possible activity values, Dv is
the subset of the data where A ¼ v and EntropyðDv

i Þ is
the informational entropy of descriptor i in that subset.
GainðDi;AÞ; the expected reduction in the informa-

tional entropy when the descriptor i is used to divide the
data set, is a rigorous measure of how well a given
descriptor distinguishes between the activity classes.
Application of the information gain to select descriptors
in decision trees leads to the ID3 algorithm [6]. The
decision trees presented here were generated using a
modification of ID3, which allows real-valued descrip-
tors to be used. This approach, similar to the methods
described in Ref. [17,18], selects quantization bounds for
each descriptor Di which maximize GainðDi;AÞ:
A good introduction to decision trees and the

algorithms used to build them can be found in Ref.
[6]. Ref. [19] has a recent survey of advanced techniques
and the state of the art.

2.4. Evaluation of model quality

How do we know how good our models are? There
are probably as many ways to answer this question as
there are modelers. We consider two components of
model quality: accuracy and overfitting.
The accuracy of a predictive model can be assessed by

means of the accuracy ratio (E). We define this ratio as:
E ¼ Atrue=Aguess; where Atrue denotes the accuracy of a
model and Aguess denotes the accuracy to be expected by
randomly guessing. For example, in a two-class problem
(i.e., where we are predicting ‘‘active’’ or ‘‘inactive’’)
guessing has a 50% chance of being correct, so Aguess ¼
0:5: Higher values of E indicate higher quality models.
Unlike accuracy, where more is better, overfitting is

something we want to minimize. Overfitting—memor-
ization of the training data—is caused by using too few
data points to train models with too many adjustable
parameters. Models that are significantly overfit do not,
in general, make accurate predictions when applied to
new data. A familiar example of a model with overfitting
problems is a cubic equation fit to 3 points: the fit to the
training data is perfect, but the model clearly is not
going to generalize well. To assess the degree of
overfitting exhibited by predictive models, we used
shuffle tests, which measure the ability of the model to
overfit the data. In a shuffle test the activity values of the
data set are randomly shuffled (permuted); this opera-
tion removes all physical connection between the
descriptors and activity.6 A model is then built using
the same parameters used for the true model. The
accuracy of this ‘‘randomized’’ model (Arandom) is used
to calculate an overfitting ratio (R): R ¼ Arandom=Atrue:
This R value is a measure of the degree of overfitting
of the predictive model: higher quality models have low
R values.
Another standard technique for determining degree of

overfitting is the hold-out test, where the model is
presented with new data (not used to construct it) in
order to see how well it generalizes. Because the data
sets used here are too small to for hold-out tests to
provide meaningful results, we relied on shuffle tests to
provide a measure of overfitting.

2.5. Descriptor calculation

The electronic structure calculations were performed
using the linear muffin-tin orbital (LMTO) method
[20–23] within the local spin-density approximation [24].
All calculations were checked for convergence of
energies, orbital moments and magnetic moments with
respect to the number of k points used in the reciprocal
space integrations [25]. Atomic-sphere radii used in the
calculations were chosen using an automated procedure.
The program used was TB-LMTO version 4.7 [26].
Where required, chemical hardness [27,28] values for the
transition metals and their alloys were calculated from
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Table 1

Descriptors used to characterize the ordered transition metals and alloys

Name Description

1 has3d? Nonzero if any of the metals present has valence 3d electrons.

2 has4d? Nonzero if any of the metals present has valence 4d electrons.

3 has5d? Nonzero if any of the metals present has valence 5d electrons.

4 ElConc Valence electron concentration (number of valence electrons in unit cell/volume of the unit cell).

5 AtVol Available atomic volume (volume of unit cell/number of atoms in unit cell).

6 Hardness Calculated chemical hardness of the metal or alloy.

G.A. Landrum, H. Genin / Journal of Solid State Chemistry 176 (2003) 587–593590
the LMTO density of states using a previously reported
procedure [12].
The calculated atomic energy levels used for the

Max DEd descriptor were taken from the ‘‘Atomic
Reference Data for Electronic Structure Calculations’’
database provided by the National Institute of Stan-
dards and Technology [29]. The energy levels used were
calculated using the local spin-density approximation.
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Fig. 2. Property map for ferromagnetism in ordered binary transition

metal alloys. Dark-/light-colored points correspond to nonmagnetic/

ferromagnetic phases, respectively.
3. Results and discussion

3.1. Predicting ferromagnetism in ordered transition

metal alloys

The data set used to build predictive models for
ordered transition metals and their alloys consists of 61
elements and binary alloys. Structural information and
data on the existence of ferromagnetism in these phases
were obtained from standard sources [30,31]. The
compounds were characterized using a set of six
descriptors Table 1. With the exception of Hardness,
the calculation of which is discussed above, the values of
these descriptors were generated arithmetically using
values looked up in a database.
As we mentioned above, there is no optimal strategy

for selecting descriptors. We arrived at the set in Table 1
using domain knowledge and Occam’s Razor as well as
intuition. Much is known about the electronic basis of
ferromagnetism, and we used that knowledge to guide
us towards descriptors that were relevant to the under-
lying physics. In addition, we have limited computa-
tional resources, so we further biased our pool by
choosing descriptors that were easy to calculate.
Physical relevance trumped ease of computation in
some cases; for example, chemical hardness is not trivial
to calculate but is known to be strongly related to
ferromagnetism, so we included it. Yet another tool that
we used was the method of structure maps, described
below. In the end, though, it was ultimately our
chemical intuition that determined exactly which de-
scriptors we employed.
The first indication that Table 1 has a good set of

descriptors for modeling this data set can be seen by
plotting calculated hardness versus available atomic
volume and coloring the points by whether or not they
are ferromagnetic, Fig. 2. Property maps of this sort
are analogous to structure maps [32] and quantum
structural diagrams, and can sometimes be used to
identify important descriptors [33,34]. Fig. 2 shows a
clearly delineated region of descriptor space that
contains only ferromagnetic compounds.
Decision trees classify data by dividing descriptor

space into discrete regions (each node in the tree can be
viewed as introducing one or more hyperplanes which
segment descriptor space), so it is no surprise that the
tree built using this data set, shown in Fig. 3, performs
well.
The decision tree of Fig. 3 classifies 100% of the data

points correctly. Because random guessing would
provide 50% accuracy, this corresponds to E ¼ 2:0:
Note that the tree-building algorithm has automatically
selected the two most important descriptors (Hardness

and AtVol) from the pool of six available. Because the
decision tree reproduces the ferromagnetic region seen
in Fig. 2 and uses only two descriptors for the 61 data
points, we are not concerned about this model over-
fitting the data set, and so no shuffle test was performed.
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Fig. 4. Property map for ferromagnetism in ordered and disordered

binary transition metal alloys. Dark/light points correspond to

nonmagnetic/ferromagnetic phases.
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> 14.6≤ 14.6

Fig. 3. Decision tree for prediction of ferromagnetism in ordered

binary alloys. Leaf nodes are colored dark/light to indicate that they

classify alloys as nonmagnetic/ferromagnetic. The relative sizes of the

leaves are determined by the number of alloys that they contain.
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3.2. Predicting ferromagnetism in disordered transition

metal alloys

Many industrially interesting transition metal alloys
are not ordered, so it would be useful to have a
predictive model that is capable of making predictions
for disordered alloys as well as ordered ones. To build
such a model we added 42 binary alloys to the previous
data set, yielding a new set of 103 alloys. The alloys
added are all disordered, but their structure types and
unit cell parameters have been measured. The structural
data were taken from the same source used above [30].
The descriptor set used for the previous model

requires electronic structure calculations in order to
calculate the chemical hardness. Therefore, this model
cannot be applied to disordered alloys.7 The other
descriptors can all be easily generated from unit cell
parameters, so only Hardness needs to be replaced.
Given the importance of quantum-mechanical exchange
in ferromagnetism [10–12,35] a measure of the strength
of the exchange interaction was selected. This new
descriptor, Max DEd ; is calculated using the maximum
valence d orbital exchange splitting in the free atoms of
the elements that make up the alloy. For example,
consider FeCo: the 3d exchange splittings in atomic Fe
and Co are 3.53 and 2.76 eV, respectively [29]; Max DEd

for FeCo is 3.53 eV. Note that Max DEd is not intended
to be an approximation to Hardness. It is a distinct
quantity which is included here due to its relevance to
the underlying physics of ferromagnetism and the fact
that it is efficiently calculable for disordered alloys.
A property map for the 103 transition metal alloys

using Max DEd and atomic volume as the axes is shown
in Fig. 4.
7This is not strictly true; it is possible to approximate the electronic

structure of disordered systems by using supercell techniques.

However, these calculations are very computationally expensive; we

would like to find something faster.
Though the ferromagnetic alloys are grouped together
to some extent in Fig. 4, they do not show the clean
segmentation that was possible with the previous data
set (Fig. 2). Two descriptors alone are no longer
sufficient to build a good predictive model. In order to
find patterns in the space defined by our six descriptors,
we employed hierarchical clustering. The results of the
clustering are promising, Fig. 5.
One of the first things to leap out from the cluster tree

of Fig. 5 is the large grouping of nonmagnetic (red)
compounds at the right side of the tree. Tracing up
through the diagram, it can be seen that this grouping is
the result of two clusters that are differentiated at a very
early step from the rest of the data. These two clusters,
containing more than 30 nonmagnetic phases, define
large volumes of descriptor space where ferromagnetic
compounds are not found. In the zoomed region at the
bottom of Fig. 5, which shows a medium sized cluster
containing both magnetic and nonmagnetic phases, one
can see that the compounds grouped together in clusters
tend to be chemically similar. This suggests that the
descriptor set chosen is chemically reasonable.
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Fig. 6. Decision tree for prediction of ferromagnetism in ordered and

disordered binary alloys. Leaf nodes are colored gray/black to indicate

that they classify alloys as ferromagnetic/nonmagnetic. The relative

sizes of the leaves are determined by the number of alloys that they

contain.
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Confirmation of the quality and suitability of this
descriptor set is provided by the decision tree built using
it, Fig. 6.
This relatively simple tree, which uses only three of

the six available descriptors, correctly classifies 99% of
the alloys in the data set (E ¼ 1:98). The misclassified
alloy, NiPt, ends up in the nonmagnetic leaf labeled
(b) in Fig. 6 instead of the ferromagnetic leaf (a). The
magnetic behavior of NiPt changes with ordering (dis-
ordered NiPt is ferromagnetic, while the ordered phase
is nonmagnetic) and our simple model does not have
sufficient resolution to reproduce this phenomenon.
Because the data set is not large enough to allow us to

perform a reasonable hold-out test, we must test for
overfitting using shuffle tests. To this end, ten shuffle
tests were performed and the results averaged. The mean
accuracy of these randomized models was 51% with
a sample standard deviation of 9%, giving a mean
overfitting ratio Ravg ¼ 0:52: The randomized models
display an accuracy which is statistically indistinguish-
able from that expected by guessing (50%). Overfitting
is unlikely to be a problem in the decision tree shown
in Fig. 6.
4. Conclusions

The implications of this investigation for the applic-
ability of machine-learning techniques in materials
problems are very promising. Using data sets that are
tiny on the scale of most machine-learning problems—
61 data points for the ordered-phase study, and 103 for
the combined ordered–disordered study—we have built
models with high predictive accuracy and little over-
fitting. In addition, we have shown that, using just a
handful of descriptors, the very simple and rapid
decision tree algorithm can, at least in outline, manage
the complexity of ferromagnetism. The details, such as
magnetic moments, remain to be addressed.
Can we extrapolate these results to other areas of

solid-state physics, such as high-Tc superconductivity?
The short answer is: possibly very soon. As mentioned
above, the descriptor sets for different problems are
going to be different, so the first task will be to find a set
of suitable descriptors for the problem. Because
ferromagnetism is well understood, it is relatively
straightforward to select a good descriptor set. High-
Tc superconductivity is not so well understood. Addi-
tionally, while there is much experimental data
available, there is not yet enough consistently measured
data. But this situation is constantly improving.
Preliminary studies have shown great promise in
classifying known data for superconductors [36]. It is
very likely that machine-learning based predictions will
become useful in the near future, as more data become
available on which to build models, and as more
descriptor sets are tested.
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[25] P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49 (1994)

16223.

[26] G. Krier, O. Jepsen, A. Burkhardt, et al., The TB-LMTO-ASA

program, v4.7.

[27] R.G. Pearson, Chemical Hardness: Applications from Molecules

to Solids, Wiley-VCH, Weinheim, 1997.

[28] W. Yang, R.F. Parr, Proc. Natl. Acad. Sci. USA 82 (1985)

6723–6726.

[29] S. Kotochigova, Z. Levine, E. Shirley, et al., National Institute of

Standards and Technology, Atomic Reference Data for Electronic

Structure Calculations, v2000.

[30] P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic

Data for Intermetallic Phases, 2nd Edition, ASM International,

Ohio, 1991.

[31] K. Adachi, D. Bonnenberg, J.J.M. Franse, et al., Landolt

Börnstein Group III/19: Magnetic Properties of Metals, Springer,

Berlin, 1986.

[32] J.K. Burdett, J. Alloys, Compounds 197 (1993) 281–289.

[33] K.M. Rabe, J.C. Phillips, P. Villars, et al., Phys. Rev. B 45 (1992)

7650–7676.

[34] K.M. Rabe, MRS Bull. 18 (1993) 31–37.
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